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The diffusion of radical ion pairs was investigated by Monte Carlo simulations of diffusional trajectories
using the drift-field approximation and an efficient algorithm for the generation of isotropic diffusional steps.
The Fourier cosine and sine transforms of the conditional probability density of first reencounter, which are
central quantities in the FreedPedersen theory for the calculation of absolute CIDNP intensities, were first
obtained numerically. On the basis of these data, and by making use of the characteristic properties of the
transforms, model functions were then derived, which approximate both transforms with a negligible error
over the range of parameters relevant for CIDNP; six global constants suffice to calculate both sine and
cosine transforms.

Chemically induced dynamic nuclear polarization (CIDNP) occurs by itself when the same two radicals reencounter: As
is an intriguing experimental phenomenon: the formation of they approach each other, the exchange interaction rises sharply
nonequilibrium populations of the nuclear spin states in the and maps the superposition state onto the eigenstates singlet or
products of a chemical reaction, which manifest themselves by triplet. Diffentiation between these is accomplished by electron-
anomalous NMR line intensities. CIDNP experiments can be spin selective chemical reactions of the radicals with each other.
used to probe many important aspects of a chemical reaction,Very frequently, the triplet pair is nonreactive in such a geminate
and often yield information that is difficult to obtain by other reaction, and triplet pairs ultimately end up by reactions that
methods. involve other species, e.g., the solvent. Starting with an ensemble

In the vast majority of cases, CIDNP arises by the radical of radical pairs of specific electron spin multiplicity, those
pair mechanism.The eigenfunctions of a two-radical system nuclear spin states that increase the intersystem crossing rate
are singlet or triplet as long as the spin Hamiltonian is are thus depleted in the products formed from pairs of that
completely dominated by the exchange interaction, in other multiplicity, and enriched in the products from pairs of the other
words, as long as the two radicals reside near each other. Hencemultiplicity. This nuclear spin sorting is detected by NMR.

a radical pair is borrrwhich occurs by a chemical reaction such Evaluation of CIDNP measurements frequently relies on
as homolytical bond cleavage or electron transfer, or by chancec|cylations of CIDNP effects from magnetic and diffusional
encounters of two radicatswith a correlation of the electron  yarameters. The present work is based on the FrBedersen
spins of the two radicals. , , theony of absolute CIDNP intensities. Central quantities in this
_After generation of the pair, the two spin-correlated radicals theory are the Fourier sine and cosine transforms of the
diffuse apart. As soon as their separation exceeds a few qngitional probability density of first reencountéft,d|ro),
molecular diameters, the spin Hamiltonian is completely \yhich describes the probability that two radicals initially
dominated by the Zeeman and hyperfine interactions of the geparated by distancg (not necessarily the encounter distance)
individual radicals despite the smallness of these interactions, 4iiain a separatiod betweert andt + dt for the first time. For

_becausg the_ exchange inte_raction d_ecreases_ very strongly Wm?reely diffusing radical pairs closed-form expressionsfodiro)
increasing distance. The eigenfunctions of this system are two ois4.5 However, in the presence of a Coulombic attraction

doubllets. While singlet. and triplet may .still bg gsed as b.asis between the radicatswhich is a very important case because
functions under these circumstances, their coefficients |naI|nearit is realized with most radical pairs generated by electron

combination become time-dependent because two independentngferthe only known solutions are infinite serfesr
electron spins In & magnetic field (of_the NMR spectrometer approximations (see, e.qg., ref 7) that cannot be incorporated into
used for observation in a CIDNP experiment) obviously POSSESS i FreedPedersen formalism

different precession frequencies unless the two radicals are '
exactly identical (not only chemically but also with respect to
the spin state of cvery magnencally coup!gd nucleus). This a Coulombic attraction between the radicals. Two potential
differential precession with a rate that is modified by the nuclear ‘ P

spin state causes the system to evolve into a coherent superposédvf‘ntages _Of this d a[:k)]profacq ar% a ph ysmall;(;_ transparent
tion state, and is the mechanism of intersystem crossing of IMplementation, and the facile adaptation to diverse con-
radical pairs. straints; on these grounds, we chose the Monte Carlo method

Intersystem crossing is only detectable if the electron spin with a view to future extensions, e.g., to micellar systems,

states of the two radicals can be gauged against each other. Thi@lthough in the case of unrestricte_d diffusion it is less efficient
than are other metho®l$or computingf(t,djro). By analyzing

*To whom correspondence should be addressed. the numerical Fourier transforms and making use of their

In this paper, we perform Monte Carlo simulations of
diffusional trajectories to obtaif{t,d|ro) for radical pairs with
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characteristic properties, we derive approximation formulas that slower than is randomization within the exchange region because
should allow quite accurate calculations of absolute CIDNP quite different sizes of the mixing interactions are involved in
intensities with the FreedPedersen theory, and possess func- these two cases.

tional forms that are expected to be similar to those of the A diffusional excursion is assumed to start at an interradical

(unknown) exact solutions. separatiomy whereJ becomes negligible, and with zero electron
spin polarization and phase correlation of the radicals. These
Results and Discussion assumptions are very plausible because no population differences

can be generated until the radicals have separateg aod the
Only mixing of the stategSOand |ToJis considered here, othe_r components of the den5|_ty matrix are destroyed during
because for most CIDNP experiments this is the only intersystemthe time negded to.reach that d!stance, ,th's effect must begome
crossing pathway. The density matrix of an ensemble of radical stronger for increasing Coulombic attraction between the radicals

pairs can be factored accordingly, and the relevant submatrix because their separation is slowed. Simulations indicate that for

can be further reduced to three elements, because the tota}ypical param_eter_s this approximation is indeed exce”:e”‘-
The excursion is assumed to end at the encounter disthnce

populationpss + pr,1, remains constant during a diffusional SO . . )
excursion as long ‘é; chemical reactions with a scavenger or{d < ro). This will slightly overestimate the population difference

electron spin relaxation involving the other triplet functions are 9enerated, because the time spent inside the exchange region

absent. It is advantageous to use the linear combinagigns is_ wrongly counted as productive for qreating a population
prere 2Repst), and 2impsr,) as basis, because the first two difference, and the loss of phase correlation on a trajectory that

correspond to observables, namely, population difference andCroSses the exchange region without leading to an encounter is
electron spin polarization. With these variables, the time- MOt taken into account. To overcome this dissymmetry of the
evolution of the density matrix under the combined influence Freed-Pedersen theory, a refined reencounter model has been

of a constant exchange interactidnand a constant mixing proposed,to which the results of this paper should be applicable
matrix elementQ occurs according to without modification. In the case of a Coulombic attraction
between the radicals the dissymmetry is less severe because

Freed—Pedersen Theory of Absolute CIDNP Intensities.

Pss™ P11, 0 20k 0 Pss™ P11, once thg racfi_ichalsd.?favg erlltered the .excharr:ge regionl,3 rslpid
9 2Im(p O) _loom o oy 1l2mee 0) 1 termination of the diffusional excursion is much more probable
ST, Q ST, 1) than for freely diffusing radicals. Again, this reasoning is borne
2Re(osr) 0 2/ 0 2Re(osr) out by simulations of trajectories.
) S Solution of eq 1 under the described conditions is straight-
The matrix elemen@ of |SO— |Toldmixing is given by forward. Provided that the probability density of first reencounter
1 f(t,d|ro) is known, an average over the trajectories can then be
=_ m — performed, which leads to the following relationship between
Q Z(AgﬂBO+ .zam Zaka) @ the density matrixes before and after each member of the

ensemble has undergone one diffusional excursion
whereAgfB; is the difference of the EPR Zeeman energies of

the two radicals, and the sum terms are the hyperfine energies

for given nuclear spin states, the first sum pertaining to the first pss_pTOT" c —so0 pﬂ%

radical. Interchanging the order of the radicals merely inverts 2Im(psr) =|s ¢ Of{2m(psr) 3)

the sign ofQ. — 00 plloo—
Expressions describing diffusion, relaxation and chemical ZRGOOSTO) after ZReQOSTo) before

reactions can be added to eq 1 (or, if necessary, a more complete

version of it that includes also other components of the density The quantities ands are the Fourier cosine and sine transforms
matrix) to give the stochastic Liouville equation (SLE)With at the angular frequency of intersystem crossiQgi2 andp is

the Monte Carlo method, this can obviously be implemented the total probability of first reencounter,

in a physically transparent, and moreover, in a very straight- .

forward way, because for sufficiently small diffusional steps, c= j; f(t,d|ry) cos(D/h)dt (4)

all differentials may be replaced by finite differences, and

gusalzgt.les such a3andQ may be regarded as constant during s— f;wf (t.diry) sin(2Qm)dt )
Instead of solving the full SLE, the Free®edersen theory
makes use of the concept of an exchange region, which provides p= j:of(t'd“o)dt (6)

a computationally much simpler approach, and even yields

analytical results in the case of free diffusion. Owing to the Analytical expressions fop are known for all relevant
strong distance dependencedothe transition between a spin  i.cumstances (see below).

Hamiltonian that is completely dominated Byand one that is On the basis of eqs-3, the yield of geminate products can
completely dominated by takes place within a very small o computed for each nuclear spin state. If electron spin
range of distances. As eq 1 shows, only electron spin polariza- yo|arization and phase correlation are destroyed upon each
tion 2Refsr,) and phase correlation 2pyr,) are mixed inthe  reancounter (see above), if the radical pair starts out in state
region whergJ| > |Q| (the exchange region); moreover, these |11 anq if the probability of geminate reaction in the singlet
components of the density matrix are randomized quite rapidly g4te is unity, this yield™ is given byid

in that region. Outside the exchange region, only population
differencepss — pr,r, (i-€., the quantity detected in a CIDNP
experiment) and phase correlation are mixed becduse0.
Some randomization of these components occurs through the
statistical distribution of times spent in this region, but is much For any other initial condition or reaction probability, the

* — p—c¢c
F 2—p+tc (7)
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geminate yield can also be computed fréfin a very simple
way, needing only the spin independent reaction probability as
an additional parametéb.

These further calculations are outside the scope of this work,
which focuses on the conditional probability deng{tyd|ro) in
the case of a Coulombic interaction between the radicals and A
its Fourier transformg ands, i.e., on the central diffusion-
related quantities needed to obtain absolute CIDNP intensities
for radical ion pairs.

Computer Simulation Method. The principle of our calcula- Figure 1. Isotropic diffusional step of lengtk of a radical pairAB.
tions was straightforward: For each set of diffusional and The figure illustrates the relationship between the interradical separation
electrostatic parameters, an ensemble of identical radical pairsbefore and after the stepys andrew For further explanation, see text.
Undor he combined Influence of randomly chosen cisrete Step<CIDITarY orfentaion in space, whih takes it o posiion B
and directed electrostatic drift were simulated. The durations (Figure 1). The points A, B, and'Borm a triangle, so
of these trajectories were collected in a histogram, which directly >
gives the probability density of a first reencounter of the radicals. Few = \/ roa ¢ — 2rgx cosy (13)

Each step of durationt consisted of the superposition of a
random displacement of constant length

The A—B—B'-angle® is not uniformly distributed between
0 andx because Bis constrained to lie on a sphere of radius
x around B. By integrating the surface elemghsin ¢ d dg
X = v 6DAt (8) over the angle, which is uniformly distributed between 0 and
) e - . _ 27, one arrives at the normalized probability dengity)
whereD is the diffusion coefficient, and a linear motiakr

X sind do [ dg
X ["sing dy [ dg

Ar = uEAt ©) p()dy = =0.5siny d? (14)
with the mobility # and the electric fieldE (drift-field ap-
proximation)!® Only Coulombic attraction is considered in this
paper, because CIDNP experiments on radical ion pairs exhibit-
ing Coulombic repulsion do not seem to have been done so
far. Hence, the displacemefit is always negative. In contrast,
the random vector of length adds vectorially to the vector
connecting the two radicals of a pair. With eq 8 and the usua
expressions for andE, eq 9 can be rewritten as ’

Hence, the distribution functioR(®) is
)
F(©) = [ p(#)d? = 0.5(1~ cos®) (15)

| The desired distribution of angles is obtained by inverting eq

CXZ ® = arccos(1- 22) (16)
r
Ar=—— (20) wherez is a random number distributed uniformly between O
6r’ and 1. Insertion of this result into eq 13 finally yields
wherer. is the Onsager radius, Mew ™= \/rﬁ,d +X =1 X2 — 42)] = \/rﬁm + X% = ryW
, (17)
€
e = —47160E KT 11 Thus, a diffusional step of B that is uniformly distributed on
' the surface of a sphere of radixsan be modeled in a very
. = _ simple way with a random number distributed uniformly in
and the mean distaneé is obtained by the interval—2x < w < + 2x. No calculation of trigonometric
functions is necessary, so the algorithm is quite fast.
1 (1, 1), (12) The diffusional steps modify, and thus the Coulombic
F rgld rﬁe attraction. Hence, drift and diffusion are coupled. Their separa-

tion by the drift-field approximation is only permissible if the
perturbation of the ionic drift by the diffusional steps is small.
Following arguments in the literatdfeve take “small” to mean
Jhat the potential energy does not change by morekfi@uring

a diffusional step. The largest effect is found whiettecreases
by x, so this condition is always fulfilled if we let

from the distancesqq and rpew before and after the random
step.

In the absence of geometrical constraints, such as those foun
in micelles, the situation of a paiAB at time t during a
diffusional excursion is completely described by the distance

r(t) between the radicals. It is thus sufficient to regard radical € 1 1

A as stationary and radical B as moving with the interdiffusion - m(; - :() <kT (18)

coefficientD and the sum of the ionic mobilities of the two or

radicals. , o Forx < r, which is expected to hold, insertion of eq 11 yields
To model the isotropic diffusional steps of B we chose the

inverse distribution function methdd, because this clearly xir < 1/(L+rJr) (19)

provides a computationally more efficient approach than the
von Neumann rejection technique under the circumstances. LetThe lower limit of the right-hand side of this expression is found
B undergo a diffusional displacement of constant lengbut for the smallest possible value ofi.e.,r = d, whered is the
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encounter distance. Therefore, we chose

xIr < 1/(1+ rJd) (20)

As eq 20 shows, a small value »fmust be used when the
radicals of a pair reside near one another. However, for large
separations this is not only unnecessary but also computationally
inefficient. Thereforex was scaled linearly with the interradical
distance, which is equivalent to scaling the time intervals of
the individual diffusional steps with?. This greatly reduces
the time needed to simulate a diffusional excursion while
maintaining the condition for the validity of the drift-field
approximation, eq 20.

Reduced variables, symbolized by a tildey”; were em-
ployed throughout. For this, all lengths were divided by the
encounter distancel, and times were multiplied by B¥d?
(compare eq 8).

For an estimation of the parameter range relevant for the
simulations, a valuefds A (this is slightly less than the mean
size of a single benzene molecule taking into account the van
der Waals radii) was chosen as fairly typical tbof an organic
radical ion pair. The Onsager radius at room temperature is 558
Ale. Simulations were performed up fg= 16, which would
include solvents with a relative permittivigy as low as 6.

In accordance with eq 20, the ratir was, therefore,
normally set to 1/20. By carrying out additional simulations with

a smaller ratio, the dependence of the obtained probability F
density on this ratio was checked. Slight discrepancies, in !

particular superimposed weak oscillations in the early parts of
the curves, arose when the starting distancapproachedl
(for fp < 1.4), which could be removed by reducirfg to 1/50
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Figure 2. Time dependence of the modified probability densiiyl|fo)
(see eq 23) for constaii$, fo = 1.26, and variable Onsager radiis
(given at the traces).
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Figure 3. Functiong(t,1/7o) (see eq 23) for constant Onsager radius,

f. = 16. The parameters at the curves denote the starting distance
lo.

reduced units is given by

in these cases. Because these effects were also observed in the
absence of Coulombic interactions, they were obviously not due f(t,d|r,)dt = f(t,1|F,)dt =

to a breakdown of the drift-field approximation but were artifacts
caused by the discretization of the isotropic diffusional step.
Because with the Freed?edersen model the starting distance
is equal to the distance where the exchange interaction has

fo—1

)

3 ;32
2

42
exp[— %}df (21)

decreased to a negligible level, a value of 1.1 was chosen asSecond, the total probability of reencounter of pairs with a

the minimumfy, which should include even extremely weak
exchange interaction. Simulations were performed up to a
maximum value ofy of 4.

A computed trajectory terminated either wherbecame
smaller than or equal td, or when no reencounter had occurred
after a given time limitma. We took ®tma/d? to be 3x 18,
Assuming a typical interdiffusion coefficient of 4 1075 cn?
s~ 1 this corresponds to an actual time on the order oft50
This second end criterion, which had to be invoked only for
smallf; and largefy, takes into account that the contributions
of excessively long diffusional excursions to CIDNP should be
quite small, because nuclear spin polarizations are lost by
relaxation. Besides, comparisons of the obtained total prob-
abilities of reencounter with the analytical solutions (see below)
indicated that most of these excursions would not have led to
a reencounter anyway.

Random numbers were generated with a subtractive algorithm

and a subsequent randomizing shuffle to remove any sequential

correlations! To ensure statistical behavior, the system time
was used for initialization before each run. Typically, an

ensemble of radical pairs comprised between 1 and 10 million
members. Calculation of their trajectories took about an hour
on a Pentium-Ill PC.

Two independent tests of the validity of the simulation
procedure were available. First, fiy= 0, i.e., in the absence
of Coulombic interactions, an analytical solution of the condi-
tional probability density of first reencounter exi8tahich in

Coulombic interaction between the radicald?is

1—exp(-rdry) 11— exp(-FJF)
1—exp(-rdd)  1—exp(Fy)
(22)

p= ;1 dirgdt =

which reduces to the known expression for free diffusipr=

diro= Fgl in the limit of vanishing Coulombic interaction. The
simulation results were found to agree excellently with all these
analytical results.

Probability Densities of First Reencounter and Their
Transforms. The changes irfi(t,1|fg) caused by a Coulombic
interaction are best seen when the curves are divided by the

time-independent factor and thie¥2 term of the expression for
free diffusion, eq 21. In Figure 2, the resulting functigisl|fo),

2_JTE+3/2
3

)
rO —

g(t, 1/F) = f(t,1/F,) (23)

1

have been plotted for constant starting distaifydeut different
Onsager radiifc. Figure 3 shows the same type of plot for
constanff; and variableo. It is found that each curvg(f,l|Fo)
converges toward a constant value, so the presence of the
Coulombic interaction does not change the long-term behavior
(t732 dependence) of(t,1/fg). The asymptotic value depends
on bothfy andfe..
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Figure 5. Normalized Fourier cosine transformg/p of the probability
density of first reencounter as functions of the reduced frequency for
constant initial separatiori= 2) and different Onsager radii: solid
line, f'c = 0; long dashed linec = 8; short dashed lind; = 16.

Figure 4. Dependence of the maximum val@ax of the modified
probability densityg(t,1|fo) (eq 23) on the initial radical separatids
The solid line is the fit curvé2®.

From these figures, it is evident that all cungég1fo) except
that for f. = 0 (no Coulombic interaction) pass through a
maximum, the height of which is practically insensitivefto
but exhibits a weak dependence @&m To a very good
approximation, this maximum height is proportionalfgf‘}, as
can be seen in Figure 4. With increasing Coulombic attraction,
the position of the maximum shifts toward earlier times, which
is physically plausible because it reflects the distance-
dependence of the Coulombic interaction, short times corre-

Fslp

sponding to small separations (eq 8). However, the position of 0 0.25 05 0.75
the maximum exhibits a much stronger dependenck, diman 2rvr
onfe. Figure 6. Normalized Fourier sine transfornig/p of the probability

Furthermore, as Figure 3 shows, and closer inspection alsodensity of first reencounter as functions of the reduced frequency for
reveals for Figure 2, at times well before the maximum the constant initial separatioff(= 2) and different Onsager radii: solid
curves g(t,1|f)) are related to one another by horizontal !ine fe= 0;long dashed linéfc = 8; short dashed lind, = 16.
displacements in the legog plots. This would be consistent
with expressions of the general form e}, of which the result
in the absence of Coulombic interaction, exp(), is a special
case. However, the time-dependent part gﬁ?,lm))~ must
comprise another time-dependent factor, becauseb&g a .
monotonic function oft. The horizontal shifts are only very S=0~ sgnQ)p exp(=2) sin() (25)
weakly dependent ori; (compare Figure 2) but show a
pronounced dependence ty(see Figure 3). Most of the latter ~ Where
effect is also present in the case of free diffusion, where two
curvesy(t,1|Fo 5 andg(t,1|Fo ) would be horizontally displaced z=(F, — 1) V6r|7| (26)
by [(foa — 1)/(fop — 1)]? in a log-log plot. The actual
displacements in Figure 3 are always smaller than the valueand the reduced intersystem crossing frequehéy given by
expected for free diffusion, and show a systematic deviation |Q|d%/(3Dh).

transformed analytically. In reduced units, the resultsare

G0 = P €XP(-2) COSQ) (24)

that increases with decreasiiig (2% when going front, = In Figures 5 and 6, examples of the numerically obtained
4.0 tofg = 2.8 compared to 12% when going frdijm= 2.0 to Fourier cosine and sine transforms of the simulated probability
fo = 1.4 in Figure 3). densitied(t,1|fo) have been plotted for different Onsager radii.

Attempts to approximatk, 1|Fo) by suitable functions, guided  Because the complex Fourier transformf(@fl|fo) for # = 0 is
by these observations, would certainly be successful. However,equal top (cf eqs 4-6), it is clear that both transforms must
we found it more promising to approximate the Fourier cosine contain the total probability of reencounfeas a multiplicative
and sine transforms df(f,1|Fo), c ands, because these are the factor. Hence, for comparison all transforms were divideg by
guantities needed for calculation of absolute CIDNP intensities. (eq 22).

Because time is measured in reduced units in our simulations, Inspection of the resulting curves shows that their general
the numerical Fourier transformationfoft,1/fo) yields functions features are not influenced by a Coulombic attraction between
of reduced frequencies that are obtained by multiplying the  the radicals: They all display an oscillatory behavior, with
actual frequencies witt?/(6D). To estimate the relevant range maxima, minima, and zero crossings of the sine and cosine

of ¥, one may assume that the mixing matrix elem@rieq 2) transforms interleaved in exactly the same way as in the case
is dominated by the Zeeman term. A value of 18ppears fairly of free diffusion. The distances between these characteristic
typical for Ag of organic radicals, and a value of Zwill hardly points are seen to be nonlinear functionsrpfand to depend

ever be surpassed. For a CIDNP experiment run on a 500 MHzon bothfy andf.. In the next section, we use these properties
NMR spectrometer, one thus has an angular frequency ofto derive suitable model functions for the transforms.

intersystem crossing betweer?Hhd 13°s71, so with the above Approximations for the Cosine and Sine Transforms.On
assumptions fod and D, 27vmax is expected to lie between  the grounds of the preceding observations, we assume that the
0.03 and 0.3. general functional forms of the transforms remain unchanged

In the absence of Coulombic interactions, the conditional by a Coulombic interaction but that the argument functions
probability density of first reencounter (see eq 21) can be change. Hence, as model functions for the cosine and sine
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Figure 7. Argument functions (see eqs 27 and 28) obtained from the
numerical transforms shown in Figures 5 and 6 with eqs 29 and 30.
For all curvesfo is 2. Solid line f(¥) andg(¥) for . = 0; long dashed
line, f(¥) for . = 8; dashed-dotted line,g(¥) for . = 8; short dashed
line, f(¥) for ¥, = 16; dotted lineg(») for f. = 16.

transforms, 7 model @Nd 7 modei We take

T moder= P eXPI-1(¥)] cos[g(7)] @7)
T model= SINQ)P exp[—f(#)] sin[g(#)] (28)

where the argument function of the exponential tér{#) and
that of the trigonometric functiog(?) is the same in both
transforms The first argument function follows from the
numerically obtained cosine and sine transformsand 7 in

a straightforward way,

() = ~Inl(7Ip)* + (7P V2

whereagy(v) is a piecewise function. For our approximations,
we restricted to the range from 0 to the first zero crossing of
& which usually occurs at much higher values thagy

(29)

estimated in the preceding section. Under these circumstances,

a(v) is given by
F.=2 0

T =

T<0

arccot (74.7)
arccot 7 7) + -

9(¥)

(30)

|

Examples of the resulting argument functions have been plotted
in Figure 7.

The known analytical results (eqs 226) show that in the
case of free diffusiorf(v) and g(¥) are identical, and their
functional form is a proportionality t8Y/2. Figure 7 reveals that
the presence of a Coulombic interaction causes these two
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Therefore, in a second step, the parameter sets were refined by
simultaneous nonlinear fits of these approximated transforms
to 7% and 7, using the simplex algorithm given in ref 11.
Because smaller values éfare most frequently encountered,
the first part of the data, up to the maximum of the sine
transform, was given twice the weight of the later part of the
data in these fits. The differences between the model curves
obtained in this way andz; and 7% were found to be very small.

To expressa, b, m, and n as functions offy and f, the
resulting array of parameters was first partitioned into sets of
constantfp, and the dependence @dpwas analyzed for each
set. In the absence of a Coulombic interaction, the exponents
mandn are equal to 1/2 and the terrasandb are both given
by 67(fo — 1) as eqs 24 and 25 show. Hence, functions of the
general form 1/2+ ¢(Fo, c) for mandn, and 6z(fo — 1)%p(Fo,
fc) for a andb were chosen as the most promising candidates.
It was found that for each set the deviations of the exponants
andn from 1/2 were to a very good approximation directly
proportional tof¢, and the multiplicative factorg in a andb
were well describable by expressions of the typé&™. Next,
the dependence oy of the constant of proportionalit€ in
the former case and & andB in the latter was investigated.
This analysis revealed that B, andC can be represented very
well by a In(Fo), B/fo, andy In(fo)/FS, respectively.

Thus, good approximations of; and 7% are provided by

TFo T ~
p expl-u(Fy, 0,871 77 cosu(fy, Fo00,8,)7] 0772
(33)
T{Fo, T ~ sgnQ)p
expl-u(fo, Focty,B)7] ™ Isinu(o, T f)7] 07

(34)
with

U(Fy, Fo0,8) = B(Fy — 1)7(atfg) VMo (35)

u(fo, Foy) =112+ y'n(F")r (36)

2 'C
fo

functions to become nondegenerate, the differences betweerand can be expressed in terms of six parameters, one set of

them increasing with increasirig and the exponent to become
larger than 1/2. Hence, model functions f@r) andg(¥), fmodel
and gmode; Were expressed as

frodel?) = [a(f, F7] ™0™ (31)

Omodel®) = [b(F,, F)9]" 0™

With f(») and g(¥) obtained from eqs 29 and 30, plots of
In[f(¥)] and In[g(?)] as functions of’ indeed gave straight lines,
with very small deviations from linearity only, so eqs 31 and
32 appear to be quite good approximations.

For each set ofp andf,, separate linear least-squares fits of
w In(¥) to In[f (¥)] and to Injg(¥)] gave starting values @& and
m, andb andn, respectively. However, instead of minimizing
x? between the actual and the approximate argument functions

(32)

three for the exponential term and another set of three for the
trigonometric terms.

Finally, starting values of the six constants were obtained by
fitting the argument functionsu(andv in eqs 31 and 32, with
egs 35 and 36) to the array af m, b, andn, and then refined
by a global nonlinear fit of eqs 33 and 34 to all data sets
and 7. Rather than carrying out a brute-force fit, the following
approach was chosen to minimize the absolute deviations:
Errors ofa, m, b, andn in eqs 31 and 32 propagate & model
and 7 modelaccording to

(i.e., between eqgs 29 and 31 as well as egs 30 and 32), one

should minimizey? between the calculated transformg and
T of the Monte Carlo results and the approximated transforms
obtained by inserting eqs 31 and 32 into eqs 27 and 28.

07

Sl — (m/a) (@) 7 o 37)
A

e (M@)o (38)
07,
e (@)@ Ty (39)
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075 model N o o)
;,;n]o f= —(ap)" IN(@7) 74 model (40) o
—8(7 0.05 +*
;godelz _(n/b)(ba)nf‘;,moda (41)
O 4
0T,
;godelz (”’b)(bﬁ)”?é,mode. (42) ~0.05 1
07, ~0.10 , . —
7 model ~ — 0 2 v : : )
3::0 C= —(b)" IN(0*9). 7 moder (43) -

Figure 8. Worst-casefp = 1.12,F. = 16) deviationsE(?) of the
074 model approximations of7 and % from the numerical Fourier transforms
——= (b9)" In(b*V). 7 1o (44) of the Monte Carlo results. Solid line, cosine transform; dotted line,
an ' sine transform. The frequency range in this figttp to the first zero
. . . ) crossing of 7—is much greater than is experimentally relevant (see
On the basis of the preceding equations, those four points oftext).

each curve”7; and. 7 were chosen, for which deviations of the

parameters have the largest effect, and the global fit procedure Lmax
was then carried out for the resulting data sets of eight per pair 0.07 7+
(Fo, Tc). The best-fit result, 0.06 1

o, = 1.1767 o, =0.9734 (45) 0.05 1

0.04
p,=0.3106 p,=0.1837 (46) 003
y,=0.1771 y, = 0.0948 (47) 0.02 s 2.0 2,8 4,0
112 14 : : :

gives a maximum error of less than 0.06, i.e., 6% of the e
n}afmmum vglue;f/iocr)ké/sln the sxperlrr\}\(le'?tt]agy reallsgc rargjge Figure 9. Dependence of the maximum approximation eriggg, of

_0 requ_en~0|es (@v = 0.3, see above). Wi . ecreasingn 7 (solid circles) and7 (open circles) on the starting distarigefor
increasingfo, the error becomes smaller. Figure 8 shows the #, = 16. The solid line is a linear regression, the broken line is a
deviations of the approximations from the numerically obtained polynomial fit, which has no significance fés < 1.12.

Fourier cosine and sine transforms in the worst-cése= (16,
I

fo = 1.12), and Figure 9 illustrates the dependence of the rel
maximum errors offip. From the latter figure, it can be inferred 1y
that the approximation of the cosine transform, which is the 0.8 1

quantity needed for calculating CIDNP intensities (eq 7),
remains good even fdip — 1.

Comparisons of the approximations and the numerical 04 1
transforms reveal that all the deviations are in fact horizontal
distortions, which is also to be expected because they are due
to errors in the argument functions. Given the fact that usually
the magnetic and diffusional parameters of the radicals are not
known to a very high degree of precision, i.e., thi& somewhat ) ) fr ) ) N
uncertain, the errors of these approximations thus appear quite, '9ure 10. Calculation of normalized CIDNP signal intensities as
tolerable. Furthermore, for small argument functions, a first- functions of the relative solvent permittivits; for a model system.

. ' ¢ Further explanation, see text.
order expansion of eq 27 can be performed. By carrying out
the analogous calculations as in the case of free diffd%imme

0.6 1

0.2

0 T T T T 7 T . !
0 10 20 30 40 50 60 70 80

finds that the quantity* (eq 7) is given by one proton (hyperfine coupling constant 20 G) and possessing
- the diffusional parametes = 6 A, D = 4 x 105 cn? s°4,
F* = _Pi) (48) andfo = 1.4. Frome,, T is obtained with eq 11, which in turn
2(1-p) yieldsp (eq 22). With the frequency, which follows from the

magnetic and diffusional parameters and the proton spin state,
the cosine transform% is computed with eqs 4547, 35-36,
and 33. By inserting this result and the valugofto eq 7 one

in this limit. On one hand, Figure 7 shows that in the presence
of a Coulombic attraction between the radicals this simplified
form is valid over a much wider range &fthan in the case of . . L
free diffusion. On the other hand, asgthe argument fund(ion gets!:*. Finally, this calculation is performed .for theand the .

is approximated with smaller deviations than is exigf)], the B spin state of the proton, and subtraction gives the population

errors in the CIDNP signals are even smaller than expected fromdifference, which is directly proportional to the CIDNP signal.
Figure 9. The curve obtained in this way (Figure 10) agrees quite well

To illustrate an application of the results derived in this paper, With the experimentally observé&ddependence of CIDNP
we calculate the dependence of CIDNP intensities on the relativeintensities ore;. In particular, its general shape reproduces the
permittivity ¢, of the solvent. As model system, we choose a experimental data much better than does the numerical simula-
radical ion pair with aj value difference of 2« 104 containing tion in ref 14.
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