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The diffusion of radical ion pairs was investigated by Monte Carlo simulations of diffusional trajectories
using the drift-field approximation and an efficient algorithm for the generation of isotropic diffusional steps.
The Fourier cosine and sine transforms of the conditional probability density of first reencounter, which are
central quantities in the Freed-Pedersen theory for the calculation of absolute CIDNP intensities, were first
obtained numerically. On the basis of these data, and by making use of the characteristic properties of the
transforms, model functions were then derived, which approximate both transforms with a negligible error
over the range of parameters relevant for CIDNP; six global constants suffice to calculate both sine and
cosine transforms.

Chemically induced dynamic nuclear polarization (CIDNP)1

is an intriguing experimental phenomenon: the formation of
nonequilibrium populations of the nuclear spin states in the
products of a chemical reaction, which manifest themselves by
anomalous NMR line intensities. CIDNP experiments can be
used to probe many important aspects of a chemical reaction,
and often yield information that is difficult to obtain by other
methods.

In the vast majority of cases, CIDNP arises by the radical
pair mechanism.2 The eigenfunctions of a two-radical system
are singlet or triplet as long as the spin Hamiltonian is
completely dominated by the exchange interaction, in other
words, as long as the two radicals reside near each other. Hence,
a radical pair is bornswhich occurs by a chemical reaction such
as homolytical bond cleavage or electron transfer, or by chance
encounters of two radicalsswith a correlation of the electron
spins of the two radicals.

After generation of the pair, the two spin-correlated radicals
diffuse apart. As soon as their separation exceeds a few
molecular diameters, the spin Hamiltonian is completely
dominated by the Zeeman and hyperfine interactions of the
individual radicals despite the smallness of these interactions,
because the exchange interaction decreases very strongly with
increasing distance. The eigenfunctions of this system are two
doublets. While singlet and triplet may still be used as basis
functions under these circumstances, their coefficients in a linear
combination become time-dependent because two independent
electron spins in a magnetic field (of the NMR spectrometer
used for observation in a CIDNP experiment) obviously possess
different precession frequencies unless the two radicals are
exactly identical (not only chemically but also with respect to
the spin state of every magnetically coupled nucleus). This
differential precession with a rate that is modified by the nuclear
spin state causes the system to evolve into a coherent superposi-
tion state, and is the mechanism of intersystem crossing of
radical pairs.

Intersystem crossing is only detectable if the electron spin
states of the two radicals can be gauged against each other. This

occurs by itself when the same two radicals reencounter: As
they approach each other, the exchange interaction rises sharply
and maps the superposition state onto the eigenstates singlet or
triplet. Diffentiation between these is accomplished by electron-
spin selective chemical reactions of the radicals with each other.
Very frequently, the triplet pair is nonreactive in such a geminate
reaction, and triplet pairs ultimately end up by reactions that
involve other species, e.g., the solvent. Starting with an ensemble
of radical pairs of specific electron spin multiplicity, those
nuclear spin states that increase the intersystem crossing rate
are thus depleted in the products formed from pairs of that
multiplicity, and enriched in the products from pairs of the other
multiplicity. This nuclear spin sorting is detected by NMR.

Evaluation of CIDNP measurements frequently relies on
calculations of CIDNP effects from magnetic and diffusional
parameters. The present work is based on the Freed-Pedersen
theory3 of absolute CIDNP intensities. Central quantities in this
theory are the Fourier sine and cosine transforms of the
conditional probability density of first reencounterf(t,d|r0),
which describes the probability that two radicals initially
separated by distancer0 (not necessarily the encounter distance)
attain a separationd betweent andt + dt for the first time. For
freely diffusing radical pairs closed-form expressions forf(t,d|r0)
exist.4,5 However, in the presence of a Coulombic attraction
between the radicalsswhich is a very important case because
it is realized with most radical pairs generated by electron
transfersthe only known solutions are infinite series6 or
approximations (see, e.g., ref 7) that cannot be incorporated into
the Freed-Pedersen formalism.

In this paper, we perform Monte Carlo simulations of
diffusional trajectories to obtainf(t,d|r0) for radical pairs with
a Coulombic attraction between the radicals. Two potential
advantages of this approach are a physically transparent
implementation, and the facile adaptation to diverse con-
straints; on these grounds, we chose the Monte Carlo method
with a view to future extensions, e.g., to micellar systems,
although in the case of unrestricted diffusion it is less efficient
than are other methods8 for computingf(t,d|r0). By analyzing
the numerical Fourier transforms and making use of their* To whom correspondence should be addressed.
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characteristic properties, we derive approximation formulas that
should allow quite accurate calculations of absolute CIDNP
intensities with the Freed-Pedersen theory, and possess func-
tional forms that are expected to be similar to those of the
(unknown) exact solutions.

Results and Discussion

Freed-Pedersen Theory of Absolute CIDNP Intensities.
Only mixing of the states|S〉 and |T0〉 is considered here,
because for most CIDNP experiments this is the only intersystem
crossing pathway. The density matrix of an ensemble of radical
pairs can be factored accordingly, and the relevant submatrix
can be further reduced to three elements, because the total
populationFSS + FT0T0 remains constant during a diffusional
excursion as long as chemical reactions with a scavenger or
electron spin relaxation involving the other triplet functions are
absent. It is advantageous to use the linear combinationsFSS -
FT0T0, 2Re(FST0), and 2Im(FST0) as basis, because the first two
correspond to observables, namely, population difference and
electron spin polarization. With these variables, the time-
evolution of the density matrix under the combined influence
of a constant exchange interactionJ and a constant mixing
matrix elementQ occurs according to

The matrix elementQ of |S〉 - |T0〉-mixing is given by

where∆gâB0 is the difference of the EPR Zeeman energies of
the two radicals, and the sum terms are the hyperfine energies
for given nuclear spin states, the first sum pertaining to the first
radical. Interchanging the order of the radicals merely inverts
the sign ofQ.

Expressions describing diffusion, relaxation and chemical
reactions can be added to eq 1 (or, if necessary, a more complete
version of it that includes also other components of the density
matrix) to give the stochastic Liouville equation (SLE).1c With
the Monte Carlo method, this can obviously be implemented
in a physically transparent, and moreover, in a very straight-
forward way, because for sufficiently small diffusional steps,
all differentials may be replaced by finite differences, and
quantities such asJ andQ may be regarded as constant during
a step.

Instead of solving the full SLE, the Freed-Pedersen theory
makes use of the concept of an exchange region, which provides
a computationally much simpler approach, and even yields
analytical results in the case of free diffusion. Owing to the
strong distance dependence ofJ the transition between a spin
Hamiltonian that is completely dominated byJ and one that is
completely dominated byQ takes place within a very small
range of distances. As eq 1 shows, only electron spin polariza-
tion 2Re(FST0) and phase correlation 2Im(FST0) are mixed in the
region where|J| . |Q| (the exchange region); moreover, these
components of the density matrix are randomized quite rapidly
in that region. Outside the exchange region, only population
differenceFSS - FT0T0 (i.e., the quantity detected in a CIDNP
experiment) and phase correlation are mixed becauseJ ≈ 0.
Some randomization of these components occurs through the
statistical distribution of times spent in this region, but is much

slower than is randomization within the exchange region because
quite different sizes of the mixing interactions are involved in
these two cases.

A diffusional excursion is assumed to start at an interradical
separationr0 whereJ becomes negligible, and with zero electron
spin polarization and phase correlation of the radicals. These
assumptions are very plausible because no population differences
can be generated until the radicals have separated tor0, and the
other components of the density matrix are destroyed during
the time needed to reach that distance; this effect must become
stronger for increasing Coulombic attraction between the radicals
because their separation is slowed. Simulations indicate that for
typical parameters this approximation is indeed excellent.

The excursion is assumed to end at the encounter distanced
(d < r0). This will slightly overestimate the population difference
generated, because the time spent inside the exchange region
is wrongly counted as productive for creating a population
difference, and the loss of phase correlation on a trajectory that
crosses the exchange region without leading to an encounter is
not taken into account. To overcome this dissymmetry of the
Freed-Pedersen theory, a refined reencounter model has been
proposed,9 to which the results of this paper should be applicable
without modification. In the case of a Coulombic attraction
between the radicals the dissymmetry is less severe because
once the radicals have entered the exchange region, rapid
termination of the diffusional excursion is much more probable
than for freely diffusing radicals. Again, this reasoning is borne
out by simulations of trajectories.

Solution of eq 1 under the described conditions is straight-
forward. Provided that the probability density of first reencounter
f(t,d|r0) is known, an average over the trajectories can then be
performed, which leads to the following relationship between
the density matrixes before and after each member of the
ensemble has undergone one diffusional excursion

The quantitiesc andsare the Fourier cosine and sine transforms
at the angular frequency of intersystem crossing 2Q/p, andp is
the total probability of first reencounter,

Analytical expressions forp are known for all relevant
circumstances (see below).

On the basis of eqs 3-6, the yield of geminate products can
be computed for each nuclear spin state. If electron spin
polarization and phase correlation are destroyed upon each
reencounter (see above), if the radical pair starts out in state
|T0〉, and if the probability of geminate reaction in the singlet
state is unity, this yieldF* is given by1d

For any other initial condition or reaction probability, the
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geminate yield can also be computed fromF* in a very simple
way, needing only the spin independent reaction probability as
an additional parameter.3b

These further calculations are outside the scope of this work,
which focuses on the conditional probability densityf(t,d|r0) in
the case of a Coulombic interaction between the radicals and
its Fourier transformsc and s, i.e., on the central diffusion-
related quantities needed to obtain absolute CIDNP intensities
for radical ion pairs.

Computer Simulation Method. The principle of our calcula-
tions was straightforward: For each set of diffusional and
electrostatic parameters, an ensemble of identical radical pairs
was considered. Individual trajectories of the ensemble members
under the combined influence of randomly chosen discrete steps
and directed electrostatic drift were simulated. The durations
of these trajectories were collected in a histogram, which directly
gives the probability density of a first reencounter of the radicals.

Each step of duration∆t consisted of the superposition of a
random displacement of constant lengthx,

whereD is the diffusion coefficient, and a linear motion∆r

with the mobility µ and the electric fieldE (drift-field ap-
proximation).10 Only Coulombic attraction is considered in this
paper, because CIDNP experiments on radical ion pairs exhibit-
ing Coulombic repulsion do not seem to have been done so
far. Hence, the displacement∆r is always negative. In contrast,
the random vector of lengthx adds vectorially to the vector
connecting the two radicals of a pair. With eq 8 and the usual
expressions forµ andE, eq 9 can be rewritten as

whererc is the Onsager radius,

and the mean distancer2 is obtained by

from the distancesrold and rnew before and after the random
step.

In the absence of geometrical constraints, such as those found
in micelles, the situation of a pairAB at time t during a
diffusional excursion is completely described by the distance
r(t) between the radicals. It is thus sufficient to regard radical
A as stationary and radical B as moving with the interdiffusion
coefficient D and the sum of the ionic mobilities of the two
radicals.

To model the isotropic diffusional steps of B we chose the
inverse distribution function method,11 because this clearly
provides a computationally more efficient approach than the
von Neumann rejection technique under the circumstances. Let
B undergo a diffusional displacement of constant lengthx but

arbitrary orientation in space, which takes it to position B′
(Figure 1). The points A, B, and B′ form a triangle, so

The A-B-B′-angleϑ is not uniformly distributed between
0 andπ because B′ is constrained to lie on a sphere of radius
x around B. By integrating the surface elementx2 sin ϑ dϑ dæ
over the angleæ, which is uniformly distributed between 0 and
2π, one arrives at the normalized probability densityp(ϑ)

Hence, the distribution functionF(Θ) is

The desired distribution of angles is obtained by inverting eq
15,

wherez is a random number distributed uniformly between 0
and 1. Insertion of this result into eq 13 finally yields

Thus, a diffusional step of B that is uniformly distributed on
the surface of a sphere of radiusx can be modeled in a very
simple way with a random numberw distributed uniformly in
the interval-2x e w e + 2x. No calculation of trigonometric
functions is necessary, so the algorithm is quite fast.

The diffusional steps modifyr, and thus the Coulombic
attraction. Hence, drift and diffusion are coupled. Their separa-
tion by the drift-field approximation is only permissible if the
perturbation of the ionic drift by the diffusional steps is small.
Following arguments in the literature12 we take “small” to mean
that the potential energy does not change by more thankTduring
a diffusional step. The largest effect is found whenr decreases
by x, so this condition is always fulfilled if we let

For x < r, which is expected to hold, insertion of eq 11 yields

The lower limit of the right-hand side of this expression is found
for the smallest possible value ofr, i.e., r ) d, whered is the

Figure 1. Isotropic diffusional step of lengthx of a radical pairAB.
The figure illustrates the relationship between the interradical separation
before and after the step,rold andrnew. For further explanation, see text.
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encounter distance. Therefore, we chose

As eq 20 shows, a small value ofx must be used when the
radicals of a pair reside near one another. However, for large
separations this is not only unnecessary but also computationally
inefficient. Therefore,x was scaled linearly with the interradical
distance, which is equivalent to scaling the time intervals of
the individual diffusional steps withr2. This greatly reduces
the time needed to simulate a diffusional excursion while
maintaining the condition for the validity of the drift-field
approximation, eq 20.

Reduced variables, symbolized by a tilde, “∼”, were em-
ployed throughout. For this, all lengths were divided by the
encounter distanced, and times were multiplied by 6D/d2

(compare eq 8).
For an estimation of the parameter range relevant for the

simulations, a value of 6 Å (this is slightly less than the mean
size of a single benzene molecule taking into account the van
der Waals radii) was chosen as fairly typical ford of an organic
radical ion pair. The Onsager radius at room temperature is 558
Å/εr. Simulations were performed up tor̃c ) 16, which would
include solvents with a relative permittivityεr as low as 6.

In accordance with eq 20, the ratiox/r was, therefore,
normally set to 1/20. By carrying out additional simulations with
a smaller ratio, the dependence of the obtained probability
density on this ratio was checked. Slight discrepancies, in
particular superimposed weak oscillations in the early parts of
the curves, arose when the starting distancer0 approachedd
(for r̃0 < 1.4), which could be removed by reducingx/r to 1/50
in these cases. Because these effects were also observed in the
absence of Coulombic interactions, they were obviously not due
to a breakdown of the drift-field approximation but were artifacts
caused by the discretization of the isotropic diffusional step.
Because with the Freed-Pedersen model the starting distance
is equal to the distance where the exchange interaction has
decreased to a negligible level, a value of 1.1 was chosen as
the minimum r̃0, which should include even extremely weak
exchange interaction. Simulations were performed up to a
maximum value ofr̃0 of 4.

A computed trajectory terminated either whenr became
smaller than or equal tod, or when no reencounter had occurred
after a given time limittmax. We took 6Dtmax/d2 to be 3× 106.
Assuming a typical interdiffusion coefficient of 4× 10-5 cm2

s-1 this corresponds to an actual time on the order of 50µs.
This second end criterion, which had to be invoked only for
small r̃c and larger̃0, takes into account that the contributions
of excessively long diffusional excursions to CIDNP should be
quite small, because nuclear spin polarizations are lost by
relaxation. Besides, comparisons of the obtained total prob-
abilities of reencounter with the analytical solutions (see below)
indicated that most of these excursions would not have led to
a reencounter anyway.

Random numbers were generated with a subtractive algorithm
and a subsequent randomizing shuffle to remove any sequential
correlations.11 To ensure statistical behavior, the system time
was used for initialization before each run. Typically, an
ensemble of radical pairs comprised between 1 and 10 million
members. Calculation of their trajectories took about an hour
on a Pentium-III PC.

Two independent tests of the validity of the simulation
procedure were available. First, forr̃c ) 0, i.e., in the absence
of Coulombic interactions, an analytical solution of the condi-
tional probability density of first reencounter exists,5 which in

reduced units is given by

Second, the total probability of reencounter of pairs with a
Coulombic interaction between the radicals, is13

which reduces to the known expression for free diffusion5 p )
d/r0 ) r̃0

-1 in the limit of vanishing Coulombic interaction. The
simulation results were found to agree excellently with all these
analytical results.

Probability Densities of First Reencounter and Their
Transforms. The changes inf(t̃,1|r̃0) caused by a Coulombic
interaction are best seen when the curves are divided by the
time-independent factor and thet̃-3/2 term of the expression for
free diffusion, eq 21. In Figure 2, the resulting functionsg(t̃,1|r̃0),

have been plotted for constant starting distancer̃0 but different
Onsager radiir̃c. Figure 3 shows the same type of plot for
constantr̃c and variabler̃0. It is found that each curveg(t̃,1|r̃0)
converges toward a constant value, so the presence of the
Coulombic interaction does not change the long-term behavior
(t-3/2 dependence) off(t̃,1|r̃0). The asymptotic value depends
on both r̃0 and r̃c.

x/r < 1/(1 + rc/d) (20)

Figure 2. Time dependence of the modified probability densityg(t̃,1|r̃0)
(see eq 23) for constantr̃0, r̃0 ) 1.26, and variable Onsager radiusr̃c

(given at the traces).

Figure 3. Functiong(t̃,1|r̃0) (see eq 23) for constant Onsager radius,
r̃c ) 16. The parameters at the curves denote the starting distance
r̃0.
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From these figures, it is evident that all curvesg(t̃,1|r̃0) except
that for r̃c ) 0 (no Coulombic interaction) pass through a
maximum, the height of which is practically insensitive tor̃c

but exhibits a weak dependence onr̃0: To a very good
approximation, this maximum height is proportional tor̃0

2/3, as
can be seen in Figure 4. With increasing Coulombic attraction,
the position of the maximum shifts toward earlier times, which
is physically plausible because it reflects the distance-
dependence of the Coulombic interaction, short times corre-
sponding to small separations (eq 8). However, the position of
the maximum exhibits a much stronger dependence onr̃0 than
on r̃c.

Furthermore, as Figure 3 shows, and closer inspection also
reveals for Figure 2, at times well before the maximum the
curves g(t̃,1|r̃0) are related to one another by horizontal
displacements in the log-log plots. This would be consistent
with expressions of the general form exp(bt̃q), of which the result
in the absence of Coulombic interaction, exp(-a/t̃), is a special
case. However, the time-dependent part ofg(t̃,1|r̃0) must
comprise another time-dependent factor, because exp(bt̃q) is a
monotonic function oft̃. The horizontal shifts are only very
weakly dependent onr̃c (compare Figure 2) but show a
pronounced dependence onr̃0 (see Figure 3). Most of the latter
effect is also present in the case of free diffusion, where two
curvesg(t̃,1|r̃0,a) andg(t̃,1|r̃0,b) would be horizontally displaced
by [(r̃0,a - 1)/(r̃0,b - 1)]2 in a log-log plot. The actual
displacements in Figure 3 are always smaller than the value
expected for free diffusion, and show a systematic deviation
that increases with decreasingr̃0 (2% when going fromr̃0 )
4.0 to r̃0 ) 2.8 compared to 12% when going fromr̃0 ) 2.0 to
r̃0 ) 1.4 in Figure 3).

Attempts to approximatef(t̃,1|r̃0) by suitable functions, guided
by these observations, would certainly be successful. However,
we found it more promising to approximate the Fourier cosine
and sine transforms off (t̃,1|r̃0), c ands, because these are the
quantities needed for calculation of absolute CIDNP intensities.

Because time is measured in reduced units in our simulations,
the numerical Fourier transformation off (t̃,1|r̃0) yields functions
of reduced frequenciesν̃ that are obtained by multiplying the
actual frequencies withd2/(6D). To estimate the relevant range
of ν̃, one may assume that the mixing matrix elementQ (eq 2)
is dominated by the Zeeman term. A value of 10-3 appears fairly
typical for∆g of organic radicals, and a value of 10-2 will hardly
ever be surpassed. For a CIDNP experiment run on a 500 MHz
NMR spectrometer, one thus has an angular frequency of
intersystem crossing between 109 and 1010 s-1, so with the above
assumptions ford and D, 2πν̃max is expected to lie between
0.03 and 0.3.

In the absence of Coulombic interactions, the conditional
probability density of first reencounter (see eq 21) can be

transformed analytically. In reduced units, the results are3b

where

and the reduced intersystem crossing frequencyν̃ is given by
|Q|d2/(3Dh).

In Figures 5 and 6, examples of the numerically obtained
Fourier cosine and sine transforms of the simulated probability
densitiesf(t̃,1|r̃0) have been plotted for different Onsager radii.
Because the complex Fourier transform off(t̃,1|r̃0) for ν̃ ) 0 is
equal top (cf eqs 4-6), it is clear that both transforms must
contain the total probability of reencounterp as a multiplicative
factor. Hence, for comparison all transforms were divided byp
(eq 22).

Inspection of the resulting curves shows that their general
features are not influenced by a Coulombic attraction between
the radicals: They all display an oscillatory behavior, with
maxima, minima, and zero crossings of the sine and cosine
transforms interleaved in exactly the same way as in the case
of free diffusion. The distances between these characteristic
points are seen to be nonlinear functions ofν̃, and to depend
on bothr̃0 and r̃c. In the next section, we use these properties
to derive suitable model functions for the transforms.

Approximations for the Cosine and Sine Transforms.On
the grounds of the preceding observations, we assume that the
general functional forms of the transforms remain unchanged
by a Coulombic interaction but that the argument functions
change. Hence, as model functions for the cosine and sine

Figure 4. Dependence of the maximum valueGmax of the modified
probability densityg(t̃,1|r̃0) (eq 23) on the initial radical separationr̃0.
The solid line is the fit curver̃0

2/3.

Figure 5. Normalized Fourier cosine transformsFc/p of the probability
density of first reencounter as functions of the reduced frequency for
constant initial separation (r̃0 ) 2) and different Onsager radii: solid
line, r̃c ) 0; long dashed line,r̃c ) 8; short dashed line,r̃c ) 16.

Figure 6. Normalized Fourier sine transformsFs/p of the probability
density of first reencounter as functions of the reduced frequency for
constant initial separation (r̃0 ) 2) and different Onsager radii: solid
line, r̃c ) 0; long dashed line,r̃c ) 8; short dashed line,r̃c ) 16.

cr̃c)0 ) p exp(-z) cos(z) (24)

sr̃c)0 ) sgn(Q)p exp(-z) sin(z) (25)

z ) (r̃0 - 1) x6π|ν̃| (26)
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transforms,Fc,model andFs,model, we take

where the argument function of the exponential termf (ν̃) and
that of the trigonometric functiong(ν̃) is the same in both
transforms. The first argument function follows from the
numerically obtained cosine and sine transformsFc andFs in
a straightforward way,

whereasg(ν̃) is a piecewise function. For our approximations,
we restrictedν̃ to the range from 0 to the first zero crossing of
Fs, which usually occurs at much higher values thanν̃max

estimated in the preceding section. Under these circumstances,
g(ν̃) is given by

Examples of the resulting argument functions have been plotted
in Figure 7.

The known analytical results (eqs 24-26) show that in the
case of free diffusionf(ν̃) and g(ν̃) are identical, and their
functional form is a proportionality toν̃1/2. Figure 7 reveals that
the presence of a Coulombic interaction causes these two
functions to become nondegenerate, the differences between
them increasing with increasingr̃c, and the exponent to become
larger than 1/2. Hence, model functions forf(ν̃) andg(ν̃), fmodel

andgmodel, were expressed as

With f(ν̃) and g(ν̃) obtained from eqs 29 and 30, plots of
ln[f(ν̃)] and ln[g(ν̃)] as functions ofν̃ indeed gave straight lines,
with very small deviations from linearity only, so eqs 31 and
32 appear to be quite good approximations.

For each set ofr̃0 and r̃c, separate linear least-squares fits of
µ ln(ν̃) to ln[f (ν̃)] and to ln[g(ν̃)] gave starting values ofa and
m, andb andn, respectively. However, instead of minimizing
ø2 between the actual and the approximate argument functions
(i.e., between eqs 29 and 31 as well as eqs 30 and 32), one
should minimizeø2 between the calculated transformsFc and
Fs of the Monte Carlo results and the approximated transforms
obtained by inserting eqs 31 and 32 into eqs 27 and 28.

Therefore, in a second step, the parameter sets were refined by
simultaneous nonlinear fits of these approximated transforms
to Fc and Fs, using the simplex algorithm given in ref 11.
Because smaller values ofν̃ are most frequently encountered,
the first part of the data, up to the maximum of the sine
transform, was given twice the weight of the later part of the
data in these fits. The differences between the model curves
obtained in this way andFc andFs were found to be very small.

To expressa, b, m, and n as functions ofr̃0 and r̃c, the
resulting array of parameters was first partitioned into sets of
constantr̃0, and the dependence onr̃c was analyzed for each
set. In the absence of a Coulombic interaction, the exponents
m andn are equal to 1/2 and the termsa andb are both given
by 6π(r̃0 - 1)2, as eqs 24 and 25 show. Hence, functions of the
general form 1/2+ φ(r̃0, r̃c) for m andn, and 6π(r̃0 - 1)2ψ(r̃0,
r̃c) for a andb were chosen as the most promising candidates.
It was found that for each set the deviations of the exponentsm
and n from 1/2 were to a very good approximation directly
proportional tor̃c, and the multiplicative factorsψ in a andb
were well describable by expressions of the typeA-Br̃c. Next,
the dependence onr̃0 of the constant of proportionalityC in
the former case and ofA andB in the latter was investigated.
This analysis revealed thatA, B, andC can be represented very
well by R ln(r̃0), â/r̃0, andγ ln(r̃0)/r̃0

2, respectively.
Thus, good approximations ofFc andFs are provided by

with

and can be expressed in terms of six parameters, one set of
three for the exponential term and another set of three for the
trigonometric terms.

Finally, starting values of the six constants were obtained by
fitting the argument functions (u andV in eqs 31 and 32, with
eqs 35 and 36) to the array ofa, m, b, andn, and then refined
by a global nonlinear fit of eqs 33 and 34 to all data setsFc

andFs. Rather than carrying out a brute-force fit, the following
approach was chosen to minimize the absolute deviations:
Errors ofa, m, b, andn in eqs 31 and 32 propagate toFc,model

andFs,modelaccording to

Figure 7. Argument functions (see eqs 27 and 28) obtained from the
numerical transforms shown in Figures 5 and 6 with eqs 29 and 30.
For all curves,r̃0 is 2. Solid line,f(ν̃) andg(ν̃) for r̃c ) 0; long dashed
line, f(ν̃) for r̃c ) 8; dashed-dotted line,g(ν̃) for r̃c ) 8; short dashed
line, f(ν̃) for r̃c ) 16; dotted line,g(ν̃) for r̃c ) 16.

∂Fc,model

∂m
) -(aν̃)mln(a‚ν̃)Fc,model (39)

Fc,model) p exp[-f(ν̃)] cos[g(ν̃)] (27)

Fs,model) sgn(Q)p exp[-f(ν̃)] sin[g(ν̃)] (28)

f (ν̃) ) -ln[(Fc/p)2 + (Fs/p)2]/2 (29)

g(ν̃) ) {arccot (Fc/Fs) : Fc g 0
arccot (Fc/Fs) + π : Fc < 0 (30)

fmodel(ν̃) ) [a(r̃0, r̃c)ν̃]m(r̃0,r̃c) (31)

gmodel(ν̃) ) [b(r̃0, r̃c)ν̃]n(r̃0,r̃c) (32)

Fc(r̃0, r̃c) ≈
p exp[-u(r̃0, r̃c,R1,â1)ν̃]V(r̃0,r̃c,γ1)cos[u(r̃0, r̃c,R2,â2)ν̃]V(r̃0,r̃c,γ2)

(33)

Fs(r̃0, r̃c) ≈ sgn(Q)p

exp[-u(r̃0, r̃c,R1,â1)ν̃]V(r̃0,r̃c,γ1)sin[u(r̃0, r̃c,R2,â2)ν̃]V(r̃0,r̃c,γ2)

(34)

u(r̃0, r̃c,R,â) ) 6π(r̃0 - 1)2(Rr̃0)
-(âr̃c)/r̃0 (35)

V(r̃0, r̃c,γ) ) 1/2 + γ
ln(r̃0)

r̃0
2

r̃c (36)

∂Fc,model

∂a
) -(m/a)(aν̃)mFc,model (37)

∂Fs,model

∂a
) -(m/a)(aν̃)mFs,model (38)
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On the basis of the preceding equations, those four points of
each curveFc andFs were chosen, for which deviations of the
parameters have the largest effect, and the global fit procedure
was then carried out for the resulting data sets of eight per pair
(r̃0, r̃c). The best-fit result,

gives a maximum error of less than 0.06, i.e., 6% of the
maximum value ofFc or Fs in the experimentally realistic range
of frequencies (2πν̃ e 0.3, see above). With decreasingr̃c and
increasingr̃0, the error becomes smaller. Figure 8 shows the
deviations of the approximations from the numerically obtained
Fourier cosine and sine transforms in the worst-case (r̃c ) 16,
r̃0 ) 1.12), and Figure 9 illustrates the dependence of the
maximum errors onr̃0. From the latter figure, it can be inferred
that the approximation of the cosine transform, which is the
quantity needed for calculating CIDNP intensities (eq 7),
remains good even forr̃0 f 1.

Comparisons of the approximations and the numerical
transforms reveal that all the deviations are in fact horizontal
distortions, which is also to be expected because they are due
to errors in the argument functions. Given the fact that usually
the magnetic and diffusional parameters of the radicals are not
known to a very high degree of precision, i.e., thatν̃ is somewhat
uncertain, the errors of these approximations thus appear quite
tolerable. Furthermore, for small argument functions, a first-
order expansion of eq 27 can be performed. By carrying out
the analogous calculations as in the case of free diffusion3b one
finds that the quantityF* (eq 7) is given by

in this limit. On one hand, Figure 7 shows that in the presence
of a Coulombic attraction between the radicals this simplified
form is valid over a much wider range ofν̃ than in the case of
free diffusion. On the other hand, as the argument functionf(ν̃)
is approximated with smaller deviations than is exp[-f(ν̃)], the
errors in the CIDNP signals are even smaller than expected from
Figure 9.

To illustrate an application of the results derived in this paper,
we calculate the dependence of CIDNP intensities on the relative
permittivity εr of the solvent. As model system, we choose a
radical ion pair with ag value difference of 2× 10-4 containing

one proton (hyperfine coupling constant 20 G) and possessing
the diffusional parametersd ) 6 Å, D ) 4 × 10-5 cm2 s-1,
and r̃0 ) 1.4. Fromεr, r̃c is obtained with eq 11, which in turn
yieldsp (eq 22). With the frequencyν̃, which follows from the
magnetic and diffusional parameters and the proton spin state,
the cosine transformFc is computed with eqs 45-47, 35-36,
and 33. By inserting this result and the value ofp into eq 7 one
getsF*. Finally, this calculation is performed for theR and the
â spin state of the proton, and subtraction gives the population
difference, which is directly proportional to the CIDNP signal.
The curve obtained in this way (Figure 10) agrees quite well
with the experimentally observed14 dependence of CIDNP
intensities onεr. In particular, its general shape reproduces the
experimental data much better than does the numerical simula-
tion in ref 14.

∂Fs,model

∂m
) -(aν̃)m ln(a‚ν̃)Fs,model (40)

∂Fc,model

∂b
) -(n/b)(bν̃)nFs,model (41)

∂Fs,model

∂b
) (n/b)(bν̃)nFc,model (42)

∂Fc,model

∂n
) -(bν̃)n ln(b‚ν̃)Fs,model (43)

∂Fs,model

∂n
) (bν̃)n ln(b‚ν̃)Fc,model (44)

R1 ) 1.1767 R2 ) 0.9734 (45)

â1 ) 0.3106 â2 ) 0.1837 (46)

γ1 ) 0.1771 γ2 ) 0.0948 (47)

F* )
pf(ν̃)

2(1 - p)
(48)

Figure 8. Worst-case (r̃0 ) 1.12, r̃c ) 16) deviationsE(ν̃) of the
approximations ofFc and Fs from the numerical Fourier transforms
of the Monte Carlo results. Solid line, cosine transform; dotted line,
sine transform. The frequency range in this figuresup to the first zero
crossing ofFssis much greater than is experimentally relevant (see
text).

Figure 9. Dependence of the maximum approximation errorsEmax of
Fc (solid circles) andFs (open circles) on the starting distancer̃0 for
r̃c ) 16. The solid line is a linear regression, the broken line is a
polynomial fit, which has no significance forr̃0 e 1.12.

Figure 10. Calculation of normalized CIDNP signal intensitiesIrel as
functions of the relative solvent permittivityεr for a model system.
Further explanation, see text.
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Conclusions

It has been shown that six constants (eqs 45-47) suffice to
reproduce the Fourier transformsFc andFs throughout a wide
range of diffusional parameters (1.1e r̃0 e 4 and 0e r̃c e 16)
very satisfactorily by the functions of eqs 33-36 despite the
comparatively simple form of the latter. Attempts to extend the
described methods to constrained diffusion, e.g., in micellar
systems, are in progress.
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